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Abstract
The density classification problem (DCP) is one of the most widely studied
problems in the theory of cellular automata. After it was shown that the DCP
cannot be solved perfectly, the research in this area has been focused on finding
better rules that could solve the DCP approximately. In this paper, we argue
that the majority voting rule in high dimensions can achieve high performance
in solving the DCP, and that its performance increases with dimension. We
support this conjecture with arguments based on the mean-field approximation
and direct computer simulations.

PACS number: 05.45.−a
Mathematics Subject Classification: 37B15, 68Q80

(Some figures may appear in colour only in the online journal)

1. Introduction

Classification of initial configurations is a type of computational problem which has been
extensively studied in the context of cellular automata (CA) theory. For problems of this type,
the initial configuration is the data and the CA evolution rule is the algorithm that processes
the data and yields the solution in the form of the final configuration. One of the simplest
classification tasks is the so-called density classification problem (DCP). The CA performing
this task should converge to a fixed point of all ones if the initial configuration contains more
ones than zeros, and to a fixed point of all zeros if the initial configuration contains more zeros
than ones.

From the time when Gacs et al proposed this problem and its first approximate solution
[11], a lot of research effort went into studying this topic. After it was proved by Land and
Belew [13] that the perfect two-state rule performing this task does not exist, approximate
solutions have been constructed using a variety of methods, including ‘complexity engineering’
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[7], genetic algorithms [15, 6, 5, 12, 16], genetic programming [2, 9], using basins of attraction
[3], analytical formulation [14] and other methods. Additionally, in 1997 Fukś [10] proposed a
generalized version of the problem involving two rules and found its exact solution, and later on
Capcarrère and Sipper [4] established the necessary conditions to obtain a solution to the DCP
involving two rules. Modified versions of the problem allowing different output specifications
and different boundary conditions had been considered as well [17]. Most recently, it has been
demonstrated that the stochastic version of the DCP can be solved with arbitrary precision [8].

In this paper, we consider a totalistic majority rule in high dimensions. We conjecture that
this rule can solve the DCP with increasing accuracy as the dimension increases. We illustrate
this claim with numerical experiments in dimensions ranging from 1 to 4, and with some
arguments based on the mean-field approximation.

2. Definitions

A binary cellular automaton (BCA) is a dynamical system which evolves in discrete time
steps. Let ZL = {0, 1, . . . , L − 1}. We will consider d-dimensional configuration space (space
of global states) defined as AZ

d
L , where A = {0, 1} is a set of allowed cell states, and where

we impose periodic boundary conditions, such that all indices of elements of AZ
d
L are taken

modulo L. Elements of the configuration space are thus hypercubes of binary symbols, and in
the special case of d = 1, the configuration space is simply a set of binary strings of length L.

Let N be a finite subset of Z
d
L, to be called a neighborhood. For a given x ∈ Z

d
L, the set

x + N will be called a neighborhood of x. Let ψ : AN → A be called a local function. CA
(rule) is a transformation � : AZ

d
L → AZ

d
L defined as

�(x)n = ψ(xn+N ), (1)

for every n ∈ Z
d
L and x ∈ AZ

d
L . � is sometimes called a global function. For a given initial

configuration x ∈ AZ
d
L , the set {�t (x)}∞t=0 of consecutive iterates of � will be called an orbit

of x.
In one dimension (d = 1), one often considers the neighborhood of radius r, defined

as N = {−r,−r + 1, . . . , r}. The global rule � is then defined by a local mapping
ψ : {0, 1}2r+1 → {0, 1}, where r is referred to as the radius of the rule. The global function is
then defined as

�(x)i = ψ(xi−r, xi−r+1, . . . , xi+r), (2)

for all x ∈ ZL and i ∈ {0, 1, . . . , L − 1}. The above neighborhood definition can be
easily generalized to higher dimensions. We define Moore neighborhood Mr,d of radius r
in dimension d as

Mr,d = {−r,−r + 1, . . . , r}d . (3)

The number of cells in this neighborhood is (2r + 1)d .
The DCP can now be stated as follows: given the initial configuration x ∈ AZ

d
L containing

majority of zeros or ones, find the CA rule � such that after sufficiently many iterations of
this rule the orbit of x reaches a homogeneous state where every cell is, respectively, in the
state 0 or in the state 1.

The performance of a given rule � in performing the density classification is typically
defined as follows. Let I denote the number of random initial configurations consisting of N
cells, drawn from a symmetric Bernoulli distribution. This means that each initial configuration
is generated by setting each of its cells independently to 0 or 1, with the same probability 1/2.
Suppose that we iterate the rule � on each of those initial configurations for a maximum of
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Figure 1. Spatiotemporal diagrams representing orbits of the majority rule 232 in 1D with initial
densities 0.4 and 0.6 (bottom) and cobweb plots illustrating iterations of the mean-field map for
this rule (top).

Tmax time steps. If a configuration with initial density less than 0.5 converges to the fixed point
of all zeros, we consider it a successful classification, similarly as when a configuration with
initial density greater than 0.5 converges to the fixed point of all ones. In all other cases we
consider the classification unsuccessful. The percentage of successful classifications among
all I initial conditions will be denoted by pI

N (�), and called performance of the rule.

3. Rule 232

One of the most obvious candidates for a potential solver of DCP is the so-called majority rule.
This rule returns 1 if and only if the majority of the cells in the neighborhood have the value
1. In one dimension and r = 1, rule 232 is the majority rule using the Wolfram numbering
convention. Its local function is defined by 000 → 0, 001 → 0, 010 → 0, 011 → 1, 100 → 0,
101 → 1, 110 → 1 and 111 → 1.

Let us consider the mean-field approximation of this rule, which assumes that at time t the
expected value of all cells is the same and equal to ct , and that there is no correlation between
sites. Under these assumptions, one can show that ct+1 = f (ct ), where f (x) = 3(1−x)x2 +x3.
The function f has three fixed points: 0, 0.5 and 1, as illustrated in figure 1. Two of them (0
and 1) are attracting fixed points while 0.5 is a repelling fixed point. For that reason, if the
initial density c0 is smaller than 1/2, then limt→∞ ct = 0, and if c0 > 0.5, limt→∞ ct = 1.

If the mean-field approximation was correct, the majority rule would solve the DCP
problem in 1D. Thus, in a sense, the mean-field behavior is the desired behavior for the
potential DCP solver. In one dimension, the mean-field approximation is not very accurate,
mainly because of the strong interdependence of individual cells. It is generally known,
however, that in higher dimensions the accuracy of the mean-field approximation improves;

3
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thus, one would expect that the performance of the majority rule as a solver of DCP should be
better in higher dimensions than in 1D. Before we consider this, however, we need to discuss
some properties of one-dimensional generalization of rule 232.

4. Majority rule in one dimension

In the one-dimensional space, the majority rule with radius r is defined as

�(x)i = majority(xi−r, xi−r+1, . . . , xi+r). (4)

Suppose that we apply this rule iteratively to a binary string of length N with periodic boundary
conditions. It has been demonstrated [1] that one of two things will eventually happen: a fixed
point or a cycle of period 2 will be reached. By a fixed point we obviously understand a string
which is invariant under the action of the majority rule. As it turns out, the dynamics of this
rule is dominated by its fixed points, because one can show that the fraction of possible strings
of length N that lead to cycles is less than N−1/2, thus becoming negligible for large N [1].
This means that orbits of almost all initial strings eventually evolve toward fixed points.

The number of these fixed points has been calculated by Z Agur [1]. For N odd and the
radius r � (N − 1)/2, the number of fixed points p(N, r) is given by

p(N, r) = 2 + 2

� N
2(r+1)

�∑
l=1

N

N − 2lr

(
N − 2lr

2l

)
. (5)

The structure of these points is not difficult to describe. Following [1], consider a binary string
a = a0a1 . . . aN−1. Let us define a run as a maximal substring of consecutive bits of equal
value. Let k be the number of runs in a, and their sizes be t1, t2, . . . , tk (since a is periodic, we
can choose the origin of the coordinate system to coincide with the beginning of some run). In
[1] it has been demonstrated that a string a is a fixed point of the majority rule if and only if,
for even k, ti � r + 1 for all i, or, for odd k, ti � r + 1 for i = 2, . . . , k − 1 and t1 + tk � r + 1.
For example, if r = 1, any string which has no isolated zeros and no isolated ones is a fixed
point. Figure 1 (bottom) shows spatiotemporal diagrams of orbits which reach fixed points of
this type.

We will make an important observation regarding p(N, r). Namely, p(N, r) decreases
with increasing r, eventually reaching the value 2. This happens when r = (N − 1)/2, that is,
when the neighborhood of any site includes all other sites. Looking at the above description
of the structure of fixed points we immediately realize that for r = (N − 1)/2, the condition
that ti must satisfy becomes

ti � r + 1 = N + 1

2
, (6)

and this is possible only if there is exactly one run—otherwise the total length of all runs would
exceed N. This means that the fixed points in this case are all zeros and all ones. Moreover,
any configuration reaches one of these fixed points in one iteration, and strings with density
less than 1/2 are mapped to all zeros, while those with density greater than 1/2 are mapped
to all ones. For odd N and r = (N − 1)/2, therefore, the majority rule is a perfect classifier of
densities.

This suggests that perhaps the DCP performance of the majority rule increases with the
radius (for fixed N). While we are not able to construct a rigorous proof of this statement,
we will offer some experimental evidence. Figure 2 shows the plot of the performance of the
majority rule as a function of its radius. We can clearly see that the performance increases
with r and reaches 100% when the ratio (2r + 1)/N becomes 1. In this case, since we took
N = 10 001, this happens when r = 5000.

4
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Figure 2. Plot of performance p10 000
10 001 of the 1D majority rule as a function of radius r.
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Figure 3. Plot of performance p10 000
N of the 1D majority rule with radius r = 1000 as a function

of lattice size N.

One can also ask what happens in the converse case, that is, when the radius r is fixed
and the size N of the lattice changes. Figure 3 demonstrates results of such an experiment. It
shows how the performance varies with N when the radius is held constant at r = 1000. A
decrease of performance can clearly be observed.

5. Mean-field approximation of the majority rule

Let us again consider the local function of the majority voting rule with n inputs:

f (x1, x2, . . . , xn) = majority{x1, x2, . . . , xn}, (7)

5
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Figure 4. Plots of fMF(x) for n = 3, 5, . . . , 19.

where n is assumed to be a positive odd integer. This is the form of the local function used
in the majority CA regardless of dimension. Of course, the inputs x1, x2, . . . , xn are arranged
linearly only in 1D, but in 2D they form a square array, etc. Details of the arrangement of
inputs are irrelevant for considerations in this section; thus, we will ignore them for now.

The mean-field polynomial associated with this function is defined as

fMF(x) =
∑

(a1,a2,...,an )∈{0,1}n

f (a1, a2, . . . , an)

n∏
i=1

xai (1 − x)ai , (8)

where we take xai = 1 if ai = 0 and (1 − x)ai = 1 if ai = 0. Here, x represents the density of
ones. Several examples of fMF are shown below:

n = 1 : fMF(x) = x

n = 3 : fMF(x) = −2x3 + 3x2

n = 5 : fMF(x) = 6x5 − 15x4 + 10x3

n = 7 : fMF(x) = −20x7 + 70x6 − 84x5 + 35x4

n = 9 : fMF(x) = 70x9 − 315x8 + 540x7 − 420x6 + 126x5

n = 11 : fMF(x) = −252x11 + 1386x10 − 3080x9 + 3465x8 − 1980x7 + 462x6.

One can easily show that the following formula for fMF(x) holds for arbitrary odd n:

fMF(x) =
n−1

2∑
i=0

(
n

i

)
xn−i(1 − x)i. (9)

Graphs of fMF for n = 3, 5, . . . , 19 are shown in figure 4. One can see from that figure that
for all n, fMF(x) has stable fixed points at x = 0 and x = 1, and an unstable (repelling) fixed
point at x = 1/2. The fixed point at x = 1/2 corresponds to the inflection point of fMF(x), and
as n increases, the slope at x = 1/2 increases too. In fact, for n = 3, 5, . . . , 19, the values of
f ′
MF(1/2) form the sequence

3

2
,

15

8
,

35

16
,

315

128
,

693

256
,

3003

1024
,

6435

2048
,

109 395

32 768
,

230 945

65 536
, . . . (10)
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or, in decimal form,

1.5, 1.875, 2.1875, 2.460 9375, 2.707 031 25, 2.932 617 188, 3.142 089 844,

3.338 470 459, 3.523 941 040, . . . .

This sequence is clearly increasing with n, which means that the unstable fixed point at 1/2 is
becoming more and more strongly repelling. Using equation (9), one can demonstrate that

f ′
MF(1/2) =

(
n + 1

n+1
2

)
2−n−1(n + 1), (11)

and therefore

lim
n→∞ f ′

MF(1/2) = ∞. (12)

This means that the mean-field approximation is becoming more and more like a step function,
and the slope at x = 1/2 tends to infinity.

We can also see from figure 4 that both x = 0 and x = 1 are strongly attracting fixed
points, with basins of attractions, respectively, [0, 1/2) and (1/2, 1]. In fact, both these points
are superattracting, meaning that f ′

MF(0) = f ′
MF(1) = 0. For superattracting fixed points

one can measure the ‘strength of attraction’ by defining the degree of superattraction as the
smallest order of a derivative which does not vanish at the fixed point. Since for a given odd
n the smallest power of x occurring in fMF(x) is (n + 1)/2, the first non-vanishing derivative
at x = 0 will be of order (n + 1)/2. Similar reasoning holds for x = 1, so that both x = 0 and
x = 1 are superattracting fixed points of degree (n + 1)/2. Again, this means that the strength
of attraction increases with n, just like the strength of repulsion for the fixed point at x = 1/2.

If we consider the majority CA rule with fixed radius, and increase the dimensionality
of space, the number of cells in the neighborhood will increase with dimension, and the
strength of attraction/repulsion of fixed points of the mean-field map will increase too. Since
the accuracy of the mean-field approximation improves with increasing dimension, we can
expect that the performance of the majority rule in solving the DCP will increase too. The
above argument explains the fact that the increasing number of cells in the neighborhood is
the main factor which could lead to increased performance of the majority rule in solving the
DCP in higher dimensions. But this is not the only factor, as we will see in the next section.

6. Simulation results

The arguments presented in the previous two sections can be verified by direct simulations,
iterating the generalized majority voting rule with a Moore neighborhood Mr,d of radius r
and dimension d:

�(x)n = majority(xn+Mr,d ), (13)

where n ∈ Z
d
L and x ∈ AZ

d
L . In what follows N will denote the total number of cells in the

lattice, N = Ld .
Performing such simulations in various dimensions, we found that for a given fixed radius

of the neighborhood, the DCP performance of the majority rule increases with dimension. We
performed simulations of the DCP for N = 104 cells in dimensions 1–4, varying r from 1 to a
value for which the performance approaches 100%. Obviously, the radius cannot be increased
ad infinitum, because at some point the neighborhood becomes large enough to include the
entire lattice, and then the performance reaches 100%.

We took the size N of the configuration space hypercube to be approximately 104 for
all dimensions. Specifically, we used L = 10001, 100, 22 and 10, respectively, for d = 1,

7
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Figure 5. Evolution of the majority rule in 3D starting from the initial configuration with density
0.43.

2, 3, and 4, yielding N = 10 001, 1002, 223 and 104. Note that for d = 3 this resulted in
N = 223 = 10 648, that is, slightly more than 10 000, but it was the only choice as the cubic
root of 10 000 is not an integer.

Also note that in the case of the 1D majority rule, we used an odd lattice size N = 10 001,
to make sure that every configuration can be classified. In higher dimensions this was not
possible, and we had to use an even lattice size. Once could ask at this point, what happens
when the majority rule is applied to a perfectly symmetric configuration, that is, configuration
with equal number of ones and zeros? It turns out that the orbit of such a configuration reaches
either the homogeneous fixed point or otherwise some other, non-homogeneous fixed point.
The probability of reaching the fixed point of all zeros is the same as the probability of reaching
the fixed point of all ones, so there is no breaking of symmetry. Each such case would then be
counted as incorrect classification.

In order to avoid the problem we slightly modified the Bernoulli distribution for
dimensions d > 1. Each time when a configuration was generated with exactly the same
number of zeros and ones, we replaced 1 bit of this configuration by its complement, to break the
symmetry. The effect of this change on the performance numbers is almost negligible, slightly
increasing these numbers, as configurations which would otherwise be always counted as
incorrectly classified now have a chance to be classified correctly. This modification, however,
has no effect on the overall conclusion of this paper.

We assumed Tmax = 200 and verified that a further increase of Tmax had no detectable
influence on the performance numbers. This is because the convergence to the homogeneous
state is very fast. An example of a few iterations of the majority rule in 3D is shown in
figure 5.

Simulation results are presented in table 1. This table shows performance of the majority
rule in dimensions 2–4. Owing to the large number of data points, numbers for d = 1 are
not shown in the table, they are instead presented in figure 2. The numbers shown in table 1
reveal the same pattern as what has been observed in one dimension, namely the performance
increases with the increasing radius r. The convergence toward the perfect performance is
faster in higher dimensions, and one could think that this is simply because the number of
cells in the neighborhood grows faster in higher dimensions.

8
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Table 1. Performance of the majority rule in dimensions 2–4 for different radii of the neighborhood.
See figure 2 for the d = 1 case.

Performance (%)

Radius r d = 2 d = 3 d = 4

1 0 9.52 78.3
2 0 84.58 93.68
3 9.06 87.25 97.35
4 45.18 89.01 98.92
5 51.42 90.36
6 52.04 92.57
7 54.12 95.57
8 54.86 98.08
9 56.3

10 56.62
15 62.51
20 68.37
25 77.15
30 85.02
35 94.36
40 98.17

We claim, however, that even if we had two rules (in different dimensions) with the same
number of cells in their neighborhoods, the rule with higher dimensions would perform better.
Obviously, having exactly the same number of cells in the neighborhood is difficult to achieve,
as we would need to find numbers r1, r2 and d1, d2 such that (2r + 1)d1 = (2r + 2)d2 . There
are, of course, many such examples, for instance d1 = 2, r1 = 4 with performance 45.15%
and d2 = 4, r2 = 1 with performance 98.92%, but it is difficult to see a general trend by
considering only such selected cases.

In order to better illustrate the influence of dimension on performance let us define the
connectivity c of the neighborhood to be the ratio of the number of cells in the neighborhood
to the number of cells in the lattice:

c = (2r + 1)d

N
. (14)

We then plot the performance of the majority rule as a function of connectivity, as shown in
figure 6. For each dimension, the graph of the performance as a function of c resembles an
S-shaped curve. This is especially visible in one dimension, while in higher dimensions
the number of data points is getting smaller; thus, the shape becomes less pronounced.
Nevertheless, we can observe that generally a curve corresponding to a higher dimension
lies above the curve corresponding to the lower dimension. We could therefore say that if the
connectivity (and thus the number of cells in the neighborhood) is fixed while the dimension
increases, then the performance increases as well. Since normally there are not too many data
points that would have exactly the same c yet belonged to different curves, we can make a
stronger statement in a more formal language, as follows.

Conjecture 1. Let �1 : AZ
d1
L1 → AZ

d1
L1 and �2 : AZ

d2
L2 → AZ

d2
L2 be two majority CA rules

with Moore neighborhoods of radii r1 and r2, containing, respectively, n1 = (2r1 + 1)d1 and
n2 = (2r2 + 1)d2 cells, where Ld1

1 = Ld2
2 . If d1 > d2 and n1 � n2, then the performance of �1

in the DCP is strictly greater than the performance of �2.

9
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10 000 of the majority rule as a function of connectivity of the

neighborhood c = (2r − 1)d/N, for dimensions d = 1(+), d = 2(×), d = 3(�) and d = 4(�).

7. Conclusion

Both the numerical results and theoretical considerations support the conjecture that the simple
majority rule improves its performance in the DCP as the dimensionality of space increases.
We hope that this observation may stimulate further research on the DCP in higher dimensions,
as well as investigations of high-dimensional versions of other problems of this type, such as,
for example, the parity problem or the non-symmetric density classification problem.

Acknowledgments

HF acknowledges financial support from the Natural Sciences and Engineering Research
Council of Canada (NSERC) in the form of Discovery Grant, and JMGS acknowledges
financial support from Research Council of México (CONACYT). This work was made
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