CÁLCULO

LISTA DE PROBLEMAS

- 1) Sea X el conjunto de todos los intervalos $(-r,r) = \{a \in \mathbb{R} : -r < a < r\}$ con r un real positivo. Para cualesquiera $A, B \in X$, escribimos que A < B si $A \neq B$ y $A \subseteq B$. Prueba que (X, <) es un conjunto ordenado.
- 2) Sea A un subconjunto no vacío de \mathbb{R} acotado por arriba. Prueba que $-A := \{-a: a \in A\}$ está acotado por abajo y que $\sup(A) = -\inf(-A)$.
- 3) Demuestra o da un contraejemplo a lo siguiente. Si A y B son subconjuntos de \mathbb{R} acotados superiormente, entonces sup A + sup B = sup A + B donde $A + B := \{a + b \in \mathbb{R} : a \in A, b \in B\}.$
- 4) Prueba que C es un R-espacio vectorial.
- 5) Demuestra que \mathbb{Z} es numerable.
- 6) Demuestra que si A y B son numerables, entonces $A \times B$ es numerable.
- 7) Encuentra todos los subconjuntos infinitos A de \mathbb{R} tal que $\mathbb{R} \setminus A$ es finito.
- 8) Define la función

$$d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad d(a,b) = |a^2 - b^2|.$$

Prueba que (\mathbb{R}, d) es un espacio métrico.

- 9) Demuestra que para todo espacio métrico (X, d), $a \in X$ y $r \geq 0$, la bola cerrada $D_r(a)$ es cerrada.
- 10) Prueba la Afirmación 2 de la Sesión 3.
- 11) Sean (X, d) un espacio métrico y A un conjunto no vacío en X. Demuestra que el conjunto de puntos límites de A y \overline{A} es el mismo. Además, da un ejemplo de que no siempre es cierto que que el conjunto de puntos límites de A e intA es igual.
- 12) Sean (X,d) un espacio métrico y A un conjunto no vacío en X. Prueba que $X \setminus \text{int}(A) = \overline{X \setminus A}$.
- 13) Sean (X, d) un espacio métrico y A, A_2, \ldots, A_n conjuntos no vacíos en X. Demuestra que $\overline{\bigcup_{i=1}^n A_i} = \bigcup_{i=1}^n \overline{A_i}$.
- 14) Encuentra una cubierta abierta de (0,1) que no tenga subcubiertas finitas.
- 15) Sean (X, d) un espacio métrico y $\{A_i\}_{i \in I}$ una familia de compactos en X. Prueba que si I es finita, entonces $\bigcup_{i \in I} A_i$ es compacto. ¿Y si I no es finita?
- 16) Sea (X, d) un espacio métrico. Asumamos que para todo subconjunto infinito B de X, B tiene un punto límite. Prueba que X es compacto.
- 17) Sea (X, d) un espacio métrico Asumamos que para todo subconjunto infinito B de X, B tiene un punto límite. Prueba que X tiene un conjunto contable denso.
- 18) Sea A un subconjunto no vacío de \mathbb{R} . Demuestra que A es un subconjunto compacto conexo si y sólo si existen $a,b\in\mathbb{R}$ con $a\leq b$ tales que A=[a,b].

- 19) Un conjunto A en \mathbb{R}^d es convexo si para todos $\mathbf{a}, \mathbf{b} \in A$ y $z \in [0,1]$, se cumple que $z\mathbf{a} + (1-z)\mathbf{b} \in A$. Prueba que si A es convexo en \mathbb{R}^d , entonces es conexo.
- 20) Sean (X,d) un espacio métrico y A un conjunto conexo no vacío en X. ¿Será int(A) conexo? y ¿ \overline{A} es conexo?
- 21) Sea $\{\mathbf{a}_n\}_{n\in\mathbb{Z}^+}$ una sucesión en \mathbb{R}^d . Prueba que si $\{\mathbf{a}_n\}_{n\in\mathbb{Z}^+}$ converge, entonces $\{\|\mathbf{a}_n\|\}_{n\in\mathbb{Z}^+}$ converge. ¿el inverso es cierto?
- 22) Sea a un real positivo. Definimos recursivamente la sucesión $\{a_n\}_{n\in\mathbb{Z}^+}$ en \mathbb{R} de la siguiente forma: $a_1 := \sqrt{a}$ y $a_{n+1} = \sqrt{a+2a_n}$ para todo $n \in \mathbb{Z}^+$. ¿Converge $\{a_n\}_{n\in\mathbb{Z}^+}$? y en caso de que converja ¿a dónde converge?
- 23) Sean $d \in \mathbb{Z}^+$ y A un subconjunto no vacío de \mathbb{R}^d . Prueba que si A es compacto, existen $\mathbf{a}, \mathbf{b} \in A$ tales que diam $(A) = \|\mathbf{a} - \mathbf{b}\|$.
- 24) Justifica que (\mathbb{Q},d) con d(a,b)=|a-b| para todos $a,b\in\mathbb{Q}$ es un espacio métrico. Además, halla una sucesión de Cauchy en Q que no sea convergente.
- 25) Determina para qué $a \in \mathbb{R}$ la sucesión $\{\frac{1}{1+a^n}\}_{n \in \mathbb{Z}^+}$ converge.
- 26) Sean (X,d) un espacio métrico y $\{K_n\}_{n\in\mathbb{Z}^+}$ una familia de cerrados y acotados no vacíos en X tales que $K_1 \supseteq K_2 \supseteq K_3 \supseteq \dots$ Asumamos que toda sucesión de Cauchy en X converge. Si $\lim_{n\to\infty} \operatorname{diam}(K_n) = 0$, entonces $\bigcap_{n=1}^{\infty} K_n$ es un único punto.
- 27) Sean {a_n}_{n∈ℤ+} una sucesión de reales no negativos. Prueba que si ∑_{n=1}[∞] a_n converge, entonces ∑_{n=1}[∞] a_n² converge.
 28) Sea a ∈ ℝ con a ≥ 2. Prueba que ∑_{n=1}[∞] a_n converge.
 20) Sean {a_n} converge a converge and a converge and a converge.
- 29) Sean $\{a_n\}_{n\in\mathbb{Z}^+}$ una sucesión de reales no negativos. Prueba que si $\sum_{n=1}^{\infty} a_n$ converge, entonces $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converge. 31) Sean $\{a_n\}_{n\in\mathbb{Z}^+}$ y $\{b_n\}_{n\in\mathbb{Z}^+}$ succesiones de reales no negativos. Asumamos
- que $\{b_n\}_{n\in\mathbb{Z}^+}$ es acotada y creciente. Pruea que si $\sum_{n=1}^{\infty} a_n$ converge, entonces $\sum_{n=1}^{\infty} a_n b_n$ converge.

 32) Sean $d \in \mathbb{Z}^+$, $\sum_{n=0}^{\infty} \mathbf{a}_n$ y $\sum_{n=0}^{\infty} \mathbf{b}_n$ series convergnetes en \mathbb{R}^d . Determina si $\sum_{n=0}^{\infty} \mathbf{a}_n \bullet \mathbf{b}_n$ converge y en caso de lo haga, determina si lo hace a $(\lim_{m\to\infty} \sum_{n=0}^{\infty} \mathbf{a}_n) \bullet (\lim_{m\to\infty} \sum_{n=0}^{\infty} \mathbf{b}_n)$.

 33) Sean (X_1, d_1) y (X_2, d_2) espacies métrices y $d \in Y_1$. Yet use función
- 33) Sean (X_1,d_1) y (X_2,d_2) espacios métricos y $\phi:X_1\to X_2$ una función continua. Prueba que

$$\phi(\overline{A}) \subseteq \overline{\phi(A)}.$$

- 34) Sea $\phi:[0,1]\to[0,1]$ una función continua. Prueba que existe $a\in[0,1]$ tal que $\phi(a) = a$.
- 35) Encuentra todos los valores de (0,1) donde la función
- $\phi(x) = \begin{cases} 0 & \text{si } x \in (0,1) \setminus \mathbb{Q}; \\ \frac{1}{m} & \text{si } x = \frac{n}{m} \in \mathbb{Q} \text{ con } m, n \text{ primos relativos} \end{cases}$ $\phi:(0,1)\to\mathbb{R},$ es continua.
- 36) Sean (X_1, d_1) y (X_2, d_2) espacios métricos y $\phi: X_1 \to X_2$ una función uniformemente continua. Prueba que si $\{x_n\}_{n\in\mathbb{Z}^+}$ es una sucesión de Cauchy en X_1 , entonces $\{\phi(x_n)\}_{n\in\mathbb{Z}^+}$ es una sucesión de Cauchy en X_2 .
- 37) Sea (X,d) un espacio métrico y $\phi,\psi:X\to\mathbb{R}$ un funciones uniformemente continuas. ¿Es $\phi \cdot \psi$ uniformemente continua?
- 38) Sea $r(x) \in \mathbb{R}[x]$. Prueba que la función

$$\phi: \mathbb{R} \to \mathbb{R}, \qquad \phi(z) = r(z)$$

CÁLCULO 3

es diferenciable.

- 39) Prueba que las funciones logaritmo natural y exponencial son derivables en su dominio.
- 40) Sean A y B abiertos de \mathbb{R} con $\phi: A \to B$ y $\psi: B \to \mathbb{R}$ funciones. ¿Será cierto que si ϕ y $\psi \circ \phi$ son derivables, entonces ψ es derivable?
- 41) Demuestra que el Teorema de Rolle implica el Teorema del valor medio.
- 42) Prueba que no necesariamente una función $\phi:A\to\mathbb{R}$ con A un abierto de \mathbb{R} que sea diferenciable y que satisfaga $\phi'(a)=0$ para toda $a\in A$ es constante.
- 43) Sean A un abierto en \mathbb{R} y $\phi:A\to\mathbb{R}$ una función derivable. Asumamos que $\phi''(a)$ existe para toda $a\in A$. Prueba que

$$\phi''(a) = \lim_{h \to 0} \frac{\phi(a+h) + \phi(a-h) - 2\phi(a)}{h^2}$$

- 44) Sean $a,b \in \mathbb{R}$ y $\phi: [a,b] \to [0,\infty)$ una función continua. Prueba que si $\int_a^b \phi(x) dx = 0$, entonces ϕ es la función constante 0.
- 45) Prueba que la siguiente afirmación es falsa. Sean $a, b \in \mathbb{R}$ con a < b y $\phi, \psi : [a, b] \to \mathbb{R}$ funciones integrables con $\phi(x) \neq 0$ para todo $x \in [a, b]$. Entonces $\frac{\psi}{\phi}$ es integrable.
- 46) Sea $\sum_{k=0}^{n} \overset{\varphi}{a_k} x^k \in \mathbb{R}[x]$. Calcula

$$\int_{a}^{b} \sum_{k=0}^{n} a_k x^k dx$$

para todos $a, b \in \mathbb{R}$ con a < b.

47) Calcula

$$\int_{1}^{e} x \ln(x) dx.$$

48) Para todo $n \in \mathbb{Z}^+$, calcula

$$\int_0^\pi \cos(x)^n dx.$$

49) Sea la curva $\gamma:[0,2\pi]\to\mathbb{R}$ dada por $\gamma(t)=(\cos(t),\sin(t))$ y la función

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \qquad \phi(x,y) = x^2 + xy + y^2.$$

Calcula $\int_{\gamma} \phi$.

- 50) Sea la curva $\gamma:[0,3]\to\mathbb{R}$ dada por $\gamma(t)=(t^3,t^2).$ Calcula la longitud de esta curva.
- 51) Demuestra o da un contraejemplo. Sean $d \in \mathbb{Z}^+$, $\gamma_1, \gamma_2 : [a, b] \to \mathbb{R}^d$ dos curvas tipo C^1 y $\phi : \mathbb{R}^d \to \mathbb{R}$ una función continua. Entonces

$$\int_{\gamma_1 + \gamma_2} \phi = \int_{\gamma_1} \phi + \int_{\gamma_2} \phi.$$

- 52) Sean $d, e \in \mathbb{Z}^+$, A un abierto de \mathbb{R}^d y $\phi : A \to \mathbb{R}^e$ una transformación lineal. Prueba que ϕ es derivable y halla $D_{\phi}(\mathbf{a})$ para toda $\mathbf{a} \in A$.
- 52) Sean $d \in \mathbb{Z}^+$ y $\mathbf{a} \cdot \mathbf{b}$ el producto punto usual de dos vectores en \mathbb{R}^d . Demuestra que la función

$$\phi: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, \qquad \phi(\mathbf{a}, \mathbf{b}) = \mathbf{a} \cdot \mathbf{b}.$$

Considerando $\mathbb{R}^d \times \mathbb{R}^d \simeq \mathbb{R}^{2d}$, prueba que ϕ es derivable y encuentra $D_{\phi}(\mathbf{a})$ para toda $\mathbf{a} \in \mathbb{R}^d \times \mathbb{R}^d$.

- 53) Sean $d, e, f \in \mathbb{Z}^+$ con A abierto en \mathbb{R}^d y B abierto en \mathbb{R}^e y funciones $\phi: A \to B$ y $\psi: B \to \mathbb{R}^f$. ¿Será cierto que si ψ es derivable y $\psi \circ \phi$ es derivable, entonces ϕ es derivable?
- 54) Demuestra que el producto punto euclidiano $\bullet : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ es derivable (considerando $\mathbb{R}^d \times \mathbb{R}^d \simeq \mathbb{R}^{2d}$) y halla su derivada.
- 55) Sean A un abierto conexo no vacío en \mathbb{R}^2 y $\phi: \mathbb{R}^2 \to \mathbb{R}$ es una función y $\tau: \mathbb{R}^2 \to \mathbb{R}$ es una transformación lineal. Supongamos que $D_{\phi}(\mathbf{a}) = \tau$ para todo $\mathbf{a} \in A$. ¿Qué podemos decir de ϕ ?
- 56) Encuentra las derivadas parciales de la función

$$\phi: \mathbb{R}^3 \to \mathbb{R}, \qquad \phi(x, y, z) = e^{x^2 + 2\sin(yz)}\cos(x + y + z).$$

57) Encuentra la derivada de

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \qquad \phi(x,y) = \int_0^x \sin(t)^{t^2} dt + \int_0^{xy} y \cos(t^2) dt.$$

58) Demuestra que para todos $k,m\in\mathbb{Z}^+$ con m par las derivadas parciales de la siguiente función existen

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \qquad \phi(x,y) = \begin{cases} \frac{(xy)^k}{x^m + y^m} & \text{si } (x,y) \neq (0,0); \\ 0 & \text{si } (x,y) = (0,0);. \end{cases}$$

- 59) Con la notación del ejercicio anterior, prueba que ϕ es derivable en (0,0) si y sólo si 2k>m.
- 60) Sean $d \in \mathbb{Z}^+$ y $\mathcal{L}(\mathbb{R}^d, \mathbb{R}^d)$ el espacio de funciones lineales de \mathbb{R}^d a \mathbb{R}^d . Hagamos I el espacio de funciones invertibles de $\mathcal{L}(\mathbb{R}^d, \mathbb{R}^d)$. Sabemos que $\mathcal{L}(\mathbb{R}^d, \mathbb{R}^d) \setminus I$ es cerrado. ¿Será compacto?
- 61) Sea

$$\phi: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, \qquad \phi(x,y) = \frac{x^2 - y^2}{x^2 + y^2}.$$

Encuentra todos los puntos donde ϕ es derivable y la derivada en esos puntos.

- 62) Sean A un abierto no vacío de \mathbb{R}^d y $\psi, \phi : A \to \mathbb{R}$ derivables. ¿Es $\phi \cdot \psi$ derivable? ¿Cuál es su derivada en términos de ϕ y ψ ?
- 63) Sean $\phi_1, \phi_2, \dots, \phi_d : \mathbb{R}^d \to \mathbb{R}$ funciones derivables. Demuestra que $\sum_{i=1}^d \phi_i \phi_i$ es derivable y calcula su derivada.
- 64) Sean $d \in \mathbb{Z}^+$ y $c \in (0,1)$. Prueba que una transformación lineal $\phi : \mathbb{R}^d \to \mathbb{R}^d$ es una c-contracción si y sólo si para todo $\mathbf{a} \in S^{d-1}$, se cumple que $\|\phi(\mathbf{a})\| \leq c$.
- 65) Sean A un abierto en \mathbb{R} y $\phi:A\to\mathbb{R}$ una función derivable. Prueba que si ϕ es una contracción, entonces $|\phi'(a)|<1$ para toda $a\in\mathbb{R}$.
- 66) Halla un abierto A de \mathbb{R} que contenga a 0 donde $\phi(x) = x^2 + x$ sea invertible y halla su inversa en ese abierto.
- 67) Prueba que no existe un abierto A de $\mathbb R$ que contenga a 0 donde $\phi(x)=x^2$ sea invertible.
- 68) Prueba que el Teorema del mapeo abierto no es cierto si no se pide que $D_{\phi}(\mathbf{a})$ sea invertible.

CÁLCULO 5

- 69) Demuestra o da un contraejemplo. Sea $c \in (0,1)$ y $\psi, \phi : \mathbb{R} \to \mathbb{R}$ unas c-contracciones. Entonces $\psi + \phi$ y $\psi \cdot \phi$ son c-contracciones.
- 70) Decide si la siguiente función es continuamente diferenciable.

$$\phi: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\phi(a,b) = (a^2 + b\cos(a), b^a\sin(a^2 + b^2))$

71) Utiliza el Teorema de la función implícita para encontrar un r, s > 0 y una función $\psi:(-r,r)\to\mathbb{R}$ derivable tal que $\psi(a)=0$ y para todo $a\in(-s,s)$ se cumple que

$$a^{2} + a\psi(a) + \psi(a)^{2} = a + \psi(a)$$

- 72) Sea A un abierto de \mathbb{R} que contiene al 0 y $\phi: A \to \mathbb{R}$ una función doblemente diferenciable con $\phi''(0) > 0$. Prueba que existe B una vecindad de 0 en A tal que $\phi|_B$ es invertible si y sólo si $\phi'(0) \neq 0$.
- 73) Calcula el jacobiano de la función

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3, \qquad \phi(a,b) = (a^2 - b, \cos(a) - \sin(a), e^{a^2 + b})$$

- 74) Encuentra todos los puntos singulares de la función del ejercicio anterior.
- 75) Sean $d \in \mathbb{Z}^+$, A un abierto no vacío de \mathbb{R}^d y $\phi, \psi : A \to \mathbb{R}$. Encuentra el jacobiano de $\phi \cdot \psi$ en términos de los jacobianos de ϕ y ψ .
- Encuentra el mínimo global de la función

$$\phi: \mathbb{R}^2 \to \mathbb{R}, \qquad \phi(a,b) = a^2 + b^2 - 2b - 3a + 1.$$

- 77) Encuetra la terna de reales (a, b, c) tal que a + b + c = 5 y $a^2 + b^4 + c^6$ es
- 78) Sean $d \in \mathbb{Z}^+$ con $d \geq 2$ y $A = \{(a_1, a_2, ..., a_d) \in \mathbb{R}^d : \sum_{j=1}^d a_j = 0\}$ 1, $\sum_{j=1}^d a_j^2 = 1\}.$ Encuentra el máximo de la función

$$\phi: A \to \mathbb{R}, \qquad \phi(a_1, a_2, \dots, a_d) = \prod_{i=1}^d a_i.$$

79) Denotemos por μ^* la medida exterior. Prueba que para todos $a, b \in \mathbb{R}$ con a < b se cumple que

$$\mu^*((a,b)) = b - a = \mu^*([a,b]).$$

80) Justifica que

$$\mu^* (\{ \mathbf{a} \in \mathbb{R}^2 : \|\mathbf{a}\| \le 1 \}) = \pi.$$

- 81) Da un ejemplo abierto y no acotado A en \mathbb{R}^d tal que $\mu^*(A)$ existe.
- 82) Prueba que Q es Lebesgue medible. ¿Cuál es su medida de Lebesgue?
- 83) Denotaremos por $\mu(X)$ la medida de Lebesgue de X, si existe. Sean $d \in \mathbb{Z}^+$, r>0 y A un subconjunto de \mathbb{R}^d con $\mu(A)>0$. Prueba que $rA=\{r\mathbf{a}:$ $\mathbf{a} \in A$ } es medible y que

$$\mu(rA) = r^d \mu(A).$$

- 84) ¿Es el conjunto $\bigcup_{k=0}^{\infty} \left[\frac{1}{2^{2k+1}} \frac{1}{2^{2k}} \right]$ Lebesgue medible? ¿Cuál es su medida? 85) Prueba que todo abierto en $\mathbb R$ es la unión contable de intervalos abiertos.
- 86) Demuestra que si ϕ es una función Lebesgue medible, entonces $|\phi|$ es Lebesgue medible.
- 87) Da un ejemplo de una función $\phi:[0,1]\to\mathbb{R}$ que sea Lebesgue medible pero que no sea continua.

88) Halla una sucesión de funciones simples $\phi_k:\mathbb{R}\to\mathbb{R}$ con $k\in\mathbb{Z}^+$ tal que su límite puntual restringido a [0,1] sea

$$\phi: [0,1] \to \mathbb{R}, \qquad \phi(z) = z^2.$$

89) Para cada $n, k \in \mathbb{Z}^+$ con $k \in \{1, 2, \dots, n\}$, sea $A_{k,n} := \left[\frac{(k-1)^2}{n^2}, \frac{k^2}{n^2}\right)$. Para $n \in \mathbb{Z}^+$, sea

$$\phi_n : \mathbb{R} \to \mathbb{R}, \qquad \phi_n(a) = \sum_{k=1}^n k \mathbf{1}_{A_k}$$

. Calcula $\int_{\mathbb{R}} \phi_n$.