Examen de admisión Maestría UAZ Junio 2016

- 1. Sea V un espacio vectorial y $\varphi:V\to V$ una transformación lineal tal que $\varphi^2=0$. Demuestre que el rango de φ es a lo más $\frac{\dim V}{2}$.
- 2. Sea $x \in \mathbb{R}_{>0}$ y definamos $f(x) = \int_0^\infty \frac{\ln t}{x^2 + t^2} dt$.
 - (a) Calcule f(1).
 - (b) Calcule f(x), para todo x > 0.
- 3. Sean F un campo y $A \in M_{n \times n}(F)$. Si A no es invertible encuentre una matriz $B \in M_{n \times n}(F)$, $B \neq 0$, tal que AB = 0.
- 4. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$.
 - (a) Determine el dominio de f.
 - (b) ¿Es f una función continua? ¿Es de clase C^1 ?
 - (c) Determine la derivada direccional de f en el punto (0,1) en dirección a $\overline{n}=(a,b)$. ¿Para qué valores de a,b la derivada direccional alcanza un máximo?
- 5. Considere la matriz

$$A = \left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 2 & -3 \\ 0 & 0 & -1 \end{array}\right).$$

Encuentre su polinomio característico, su polinomio mínimo, su determinante, su inversa y su forma canónica de Jordan J. Además encuentre la matriz S tal que $J = SAS^{-1}$.