MAESTRÍA EN MATEMÁTICAS UAZ

Examen de admisión

5 de mayo del 2022

Instrucciones: Resuelve los siguientes problemas y argumenta cada paso de tu solución.

- 1. Demuestra que si A es un subconjunto de los números enteros entre 1 y n tales que |A|>2n/3, entonces para cada $i\in\{1,2,3\}$ existe $k\in\mathbb{Z}^+$ tal que $i+3k\in A$.
- 2. Sea F un campo. Considera la función

$$T: F_{n \times n} \to F_{n \times n}$$

$$A \mapsto A - \frac{\operatorname{traza} A}{n} I$$

- i) Muestra que T es transformación lineal;
- ii) Calcula la dimensión de la imagen y del espacio anulador de T.
- 3. Sea V un espacio de dimensión finita dim(V) = n sobre un campo F con un producto interior y sea $W \subset V$ un subespacio de dimensión k:
 - i) Demuestra que $dim(W^{\perp}) = n k;$
 - ii) Demuestra que $W = (W^{\perp})^{\perp}$
 - iii) Demuestra que existen subespacios $H_1,...,H_{n-k},$ tales que $dim(H_j)=n-1$ y que

$$W = \bigcap_{j=1}^{n-k} H_j.$$

Sugerencia: Si $v_1,...,v_{n-k}$ es base de W^{\perp} muestra que $H_j=\langle v_j\rangle^{\perp}$ satisfacen.

4. Sea g continua. Calcule $D_{(a,b)}f$, donde

$$f(x,y) = \int_0^{xy} g(t)dt.$$

5. Determine la integrabilidad sobre I=[0,1] de la función $f:I\to I$ dada por

$$f(x) = \begin{cases} x & \text{si} \quad x \in \mathcal{C} \\ 0 & \text{si} \quad x \notin \mathcal{C} \end{cases},$$

donde $\mathcal{C} \subseteq I$ es el conjunto ternario de Cantor. Si es el caso, calcule

$$\int_0^1 f(x)dx.$$